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Communication in biological systems must deal with noise and metabolic or temporal constraints. We
include these constraints into information theory to obtain the distributions of signal usage corresponding to a
maximal rate of information transfer given any noise structure and any constraints. Generalized versions of the
Boltzmann, Gaussian, or Poisson distributions are obtained for linear, quadratic and temporal constraints,
respectively. These distributions are shown to imply that biological transformations must dedicate a larger
output range to the more probable inputs and less to the outputs with higher noise and higher participation in
the constraint. To show the general theory of reliable communication at work, we apply these results to
biochemical and neuronal signaling. Noncooperative enzyme kinetics is shown to be suited for transfer of a
high signal quality when the input distribution has a maximum at low concentrations while cooperative kinetics
for near-Gaussian input statistics. Neuronal codes based on spike rates, spike times or bursts have to balance
signal quality and cost-efficiency and at the network level imply sparseness and uncorrelation within the limits
of noise, cost, and processing operations.
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I. INTRODUCTION

Optimization theory has made an important impact in our
understanding of biological structures like insect compound
eyes or bones as well as in biological movement and behav-
ior [1]. Optimality arguments complement mechanistic mod-
els by pointing to relevant constraints and common themes
underlying different mechanisms. Here we are interested in
optimal biological signaling. Arguments about the optimality
of biological signaling have a long tradition, especially in
neuroscience[2–6]. An important reason for the success of
optimality theories of biological signaling is the applicability
of information theory[7] and the links of this theory to sta-
tistical physics[2].

Recently, realistic constraints have been incorporated to
the theory of optimal biological signaling for a better corre-
spondence with experiments. Energy costs have been consid-
ered in the context of neuronal signaling[8] and theoretical
results in this case have been shown to correspond to some
cortical neurons[9,10]. We have generalized the optimal sig-
naling theory by considering both costs and noise[11]. We
found a much improved correspondence between theory and
experiments in most cortical neurons when including both
noise and cost constraints into the theory. Both signal quality
and cost-efficiency were found to shape signaling. Similar
discussions of the interplay of cost and noise have been
given in the discussion of retinal signaling[12,13] and in
other stochastic neural signaling problems[14].

Here we extend the general theory of optimal biological
signaling to consider any type of constraints. A generalized
Boltzmann distribution is obtained for a linear cost con-
straint, a generalized Poisson when the constraint is in the
times and a generalized Gaussian when considering qua-

dratic constraints. We also show optimal signaling at work in
biochemical and neuronal signaling. The simple “rule of
thumb” we obtain is that biological systems with a high in-
formation transfer must dedicate more output range to the
more probable inputs and less to the noisier ones and to those
paying a higher metabolic cost or time. We also show the
links of the present theory to results in statistical physics,
that are obtained here in the limit of no noise or no transi-
tions.

The paper is organized as follows. Section II gives the
statement of the maximization of the constrained information
transfer. Section III discusses a particular case with analyti-
cal solution to gain insight into the general problem. Section
IV gives an application to the case of enzymatic reactions.
Section V gives the general solution to the optimal problem
as a generalized Boltzmann form. Section VI discusses the
case of temporal constraints, that results in a generalized
Poisson distribution. Section VII gives the application to sev-
eral cases of neuronal signaling. Section VIII discusses con-
straints for several components that reduce to results in sta-
tistical mechanics in the limit of no noise or no transitions.
Finally, we discuss possible extensions of the results.

II. MAXIMUM INFORMATION TRANSFER WITHIN
BIOLOGICAL CONSTRAINTS

Consider first the simple case of discrete states and a
single constraint. The term information transfer is used infor-
mally in biology and its most studied quantitative counter-
part is the information transfer proposed by Shannon
[2,7,15]. Let S=hs1,s2, . . . ,skj be the input states andM
=hm1,m2, . . . ,mlj the output states. There is information
transfer when there is a statistical dependency between input
and output. This is expressed as the averagedistancebe-
tween the joint distribution for input and output states
pssi ,mjd and the distribution corresponding to complete in-
dependency between thempssi ,mjdind;pssidpsmjd as
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IsS;Md = o
i,j

pssi,mjdlogS pssi,mjd
pssidpsmjd

D . s1d

Our optimization problem consists in maximizing the in-
formation transferI given a cost constraint and a noise struc-
ture. The cost constraint and the noise structure are included
in the maximization in the following way. The cost constraint
is given by fixing the average valueE of a quantitye, say the
expected energy and the energy values of the systems states,
respectively, asE=oipsmidei. This cost might be metabolic
or, for example, an average time. Costs that are physically
very different, like energy or time, can be treated identically
from a mathematical point of view. The noise structure is
fixed by an specified transition matrixQkj=psskumjd given by
the probability that when the the output is in statemj the
input state wassk. The transition matrixQ is introduced in
the definition of the information transferI in the following
way. The information transferI can be expressed as the dif-
ference between the output entropy and the noise entropy,
IsS;Md=HsMd−HsM uSd, with HsMd=−o jpsmjdlog psmjd
the output entropy andHsM uSd=−o j ,kpssj ,mkdlog psmj uskd
the noise entropy. To express the noise entropy solely in
terms of the output probabilitieshpsmidj and the matrixQ,
we use the following relations. We can write the noise en-
tropy asHsM uSd=o jpsmjdj j with

j j = − o
k

Qkj log Pjk, s2d

where the matrixP has elementsPjk;psmj uskd that can be
expressed in terms of the transition matrixQ using Bayes’
theorem[15] as

Pjk =
psmjdQkj

o j
psmjdQkj

. s3d

The maximum information transfer problem consists then
in finding the output probabilitieshpsmidj that maximize the
information transferI given the noise matrixQ and the cost
constraintE=oipsmidei. Equivalently, using the method of
the Lagrange multipliers, we can maximize

L ª I − bSo
j

psmjde j − ED − lSo
j

psmjd − 1D , s4d

with I the information transfer and the second and third
terms the cost constraint and the normalization, respectively.

III. AN ANALYTICAL EXAMPLE

To gain insight into the type of solutions we can obtain
from the constrained maximum information problem, we
first consider a simple analytical case with three states. The
first two states have the same noise and cost and the third
one is noiseless and has a higher cost, as depicted in Fig. 1.
This means thate1=e2, e3.e2 and the noise matrix is given
by Q11=Q22=1−r, Q12=Q21=r andQ33=1. The information
transferI for this case can be written as

IsS;Md = − 2psm1dlog psm1d − psm3dlog psm3d − 2psm1dj,

s5d

with the j j in Eq. (2) given by

j1 = j2 = − r log r − s1 − rdlogs1 − rd ; j;j3 = 0. s6d

The output states that maximizeL in Eq. (4) are

psm1d = psm2d = Z−1 exps− be1 − jd, s7d

psm3d = Z−1 exps− be3d, s8d

with Z=2 exps−be1−jd+exps−be3d the normalization con-
stant andb given by the value of the average energy
2psm1de1+psm3de3=E. The probabilities for the input states
are obtained frompsskd=oiQkipsmid to be pss1d=pss2d
=psm1d andpss3d=psm3d.

In the case of equal costs and equal noise for all states, the
information transfer is maximized with equal output prob-
abilities. In the case of all states having the same noise but
different costs, the output states that maximize the informa-
tion transfer have a Boltzmann distribution that penalizes
more the output states with higher cost with a factor
exps−bend for the nth state. In the case of all states having
the same cost but different noise, output states are penalized
more with higher noise with a factor exps−jnd. In general,
both cost and noise penalize output states in a form general-
izing the Boltzmann distribution with an extra exponent pe-
nalizing the amount of noise.

From this example we can also obtain the relationship
between the information transferI and the average value of
the constraintE substituting the output probabilities into the
expression ofI in Eq. (1) to obtain

I = bE + log Z, s9d

or in terms of the output and noise entropies asHsSd=bE
+log Z+HsSuMd or HsMd=bE+log Z+HsM uSd, respec-
tively. In the limit of no transitions(r→0 in the example)
the probabilities reduce to the Boltzmann form and the rela-
tion in Eq. (9) to the relationship familiar in statistical me-
chanics of the formH=bE+log Z with HsSd=HsMd.

FIG. 1. Simple case of communication from three input states to
three output states. Maximum information transfer with a constraint
in the cost implies a penalization of the noisy states(the first two)
and of the costly states(the third one). These abstract states can
represent, for example, enzyme concentration values, the different
firing patterns of a neuron, or the patterns of network activity.
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IV. INFORMATION TRANSFER IN BIOCHEMICAL
REACTIONS

We consider the transformation of input states given by
the value of the concentration of substratefSg into the veloc-
ity of an enzymatic reactionv. We consider here the simple
case of a single substrate. For generality, we consider the Hill
equation, a phenomenological expression valid both for non-
cooperative and cooperative kinetics, of the form

v =
fSgn

kn + fSgn , s10d

corresponding to Michaelis-Menten kinetics forn=1 and to
cooperative kinetics forn.1, with the degree of cooperativ-
ity increasing withn. To understand the difference between
noncooperative kinetics and cooperative kinetics for infor-
mation transfer, we consider the simplest case of no noise
present and no cost constraint. The maximization of the in-
formation transfer in this case givespsvd=a with a a con-
stant. In general the input and output probabilities are related
by psskd=oiQkipsmid. The simple case with no noise is a
transformation of variables fromfSg to v so the probability
densities are related aspsvddv=psfSgddfSg. Using the opti-
mal velocity density psvd=a, it follows that psfSgd
=asdv /dfSgd, that gives

psfSgd =
knnfSgn−1

skn + fSgnd2 . s11d

Figure 2 illustrates this relationship between the input to
output transformation and the input and the output probabil-
ity densities that maximize the information transfer. For
maximum transfer with no noise(or same noise for all ve-
locities) and no cost constraint the input density must be the
derivative of the input to output transformation. This means
that the more probable inputs have a larger output range.

Two identical intervals of substrate values shown in Fig. 2
have very different output ranges, larger in the case of the
more probable inputs.

Figure 3 shows the optimal substrate distribution for dif-
ferent values of cooperativityn. For the Michaelis-Menten
case,n=1, the distribution has a maximum atfSg=0 and a
heavy tail that makes the mean undefined. For cooperative
kinetics the densities have their maximum at
pkn−1 cosecsp /nd that increases with increasingn, and in the
limit n→` tends tok. With increasing cooperativity the den-
sity is increasingly close to a Gaussian function centered atk
and with decreasing width. The qualitative difference be-
tween the Michaelis-Menten and cooperative kinetics can be
understood with the aid of Fig. 2. The largest slope of the
reaction velocity in the Michaelis-Menten case is at low sub-
strate concentrations, while for cooperative kinetics is close
to k. For the most probable inputs to have a larger output
representation, the substrate distribution has then to be maxi-
mal at low values for Michaelis-Menten and at values close
to k for cooperative kinetics.

The match between substrate distribution and kinetics dis-
cussed in Fig. 2 is for a stationary substrate distribution.
When this distribution varies with time, the kinetics must
change accordingly to keep the match that assures maximal
information transfer. The input to output transformation must
then adapt to the changing statistics as

vsfSg;td =E
0

fSg

dfSgPsfSg;td. s12d

Figure 4 illustrates the case of a probability density of a
substrate with a decreasing variance in time. The transforma-
tion that maximizes the information transfer then corre-
sponds to a cooperativity increasing in time.

For the case of maximal information transfer with a cost
constraint with costs of the formesvd, the optimal probability
density of substrate concentration is

FIG. 2. Relationship between input and output distributions and
the input to output transformation for maximum information trans-
fer, here illustrated for the transformation from the dimensionless
substrate concentrationfSg /k to the dimensionless reaction velocity
v. In the simple case of no noise present and no cost constraint, the
output distribution is a constant and the transformation is the inte-
gral of the input distribution. More output range is then dedicated to
the more probable inputs, as illustrated by the two equal intervals of
substrate concentration.

FIG. 3. Substrate distributions for simple reaction kinetics maxi-
mize the information transfer. For Michaelis-Menten kineticssn
=1d the distribution has a maximum at the lowest substrate concen-
tration and a heavy tail. Increasing the cooperativityn of the kinet-
ics corresponds to distributions with a maximum closer to the con-
stantk in the reaction kinetics in Eq.(12).
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PsfSgd = Z−1 knnfSgn−1

skn + fSgnd2 exp„− besvd…. s13d

The substrate values contributing to a larger output range are
the most probable ones with the lower cost at the output. In
the next section we will see that the noise acts as an extra
cost as already seen in the example given in Sec. III.

V. GENERAL SOLUTIONS

To obtain the general solution we will use the alternating
Blahut-Arimoto algorithm[15–17], used in communication
theory to calculate the channel capacity and the rate distor-
tion function [15]. The maximization of the constrained in-
formation information transfer,

max
psmd:o jpsmjde j=E

o
j ,k

psmjdQkj log
psmjdQkj

psmjdoi
psmidQki

, s14d

can be expressed as a double maximization[see Lemma
13.8.1 and Eq. 13.145 in[15]] as

max
P

max
psmd:o jpsmjde j=E

o
j ,k

psmjdQkj log
Pjk

psmjd
. s15d

The double maximization can be performed using the alter-
nating Blahut-Arimoto algorithm[15–17]. This algorithm
starts with a guess of the output distributionpsmid (say, a
random vector) and finds thePjk from Eq.(3). A better guess
for the output probabilities is then given by

psmjd =
exp −sbe j − ok

Qkj log Pjkd

o j
exp −sbe j − ok

Qkj log Pjkd
, s16d

whereb in Eq. (16) has to be evaluated at each step in the
alternating algorithm from the energy constraint as

o j
e j exp −sbe j − ok

Qjk log Pjkd

o j
exp −sbe j − ok

Qjk log Pjkd
= E. s17d

This output distributionpsmd in Eq. (16) is then used for the
next iteration and the operation is repeated until conver-
gence. Csiszar and Tusnady[18] have shown that such an
alternating algorithm converges to the maximum for this type
of problems. For clarity, we give the recipe for calculation as
follows.

Initialize p0 as a random vector.
FOR t=0,1,2. . .(until convergence),

Pjk
t =

ptsmjdQkj

o j
ptsmjdQkj

, s18d

pt+1smjd =
exp −sbte j − ok

Qkj log Pjk
t d

o j
exp −sbte j − ok

Qkj log Pjk
t d

, s19d

wherebt in Eq. (19) has to be evaluated for eacht from the
energy constraint

o j
e j exp −sbte j − ok

Qjk log Pjk
t d

o j
exp −sbte j − ok

Qjk log Pjk
t d

= E. s20d

ENDFOR
As in the simple analytical example in Sec. III, the prob-

abilities have the form

psmjd = Ẑ−1 exps− b̂e j − ĵ jd, s21d

where the hat symbol inẐ, b̂ and ĵ refers to the converged
values. The distribution obtained has then the form of a gen-
eralized Boltzmann distribution with an exponential penal-
ization of cost and noise.

VI. GENERALIZED POISSON DISTRIBUTIONS FOR
TEMPORAL CONSTRAINTS

We have considered the maximization of the information
transferI given a cost constraint and obtained a generalized
Boltzmann distribution. When considering that the output

FIG. 4. Maximum information transfer for nonstationary sub-
strate statistics. (a) Example of a substrate distribution that has a
decreasing variance in time.(b) To keep the match between input
statistics and kinetics that assures maximal transfer, the kinetics has
to adapt when the change in substrate statistics. In this case the
kinetics has to increase its degree of cooperativity.
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statesM take different times, these different times play the
role of the costs and the Boltzmann distribution reduces to
the Poisson distribution. In previous sections we have con-
sidered the maximization of the information transferI. A
maximization of the rate of information transferI /T does not
affect previous results, but it matters when the different costs
are times. In particular, the maximization of the rate of in-
formation transferI /T singles out a particular Poisson distri-
bution, as we show in the following.

Let the inputS be the timest and the output states the
timest. The information transfer has the form

Ist;td =E
0

` E
0

`

dt dt pst,tdlogS pst,td
pstdpstd

D s22d

that can be written using entropies asIsS;Md=HsMd
−HsM uSd, with Hstd=−e0

`dt pstdlogpstd and Hst u td
=e0

`dte0
`pstdpst utdlogpst u td. The average timeT is given by

T=e0
`dt pstdt. Maximizing information transferI with an

average time constraintT is equivalent to maximizingL
ª I −bT. For the case in which all output states have the
same noise,Hst u td=a, this maximization gives

pstd =
1

T
exps− t/Td, s23d

that is a Poisson distribution corresponding to an information
transfer of the formI =logT+1−a.

The maximization of the information rateI /T when allt
have the same noise is a particular Poisson distribution.
Maximizing the function I /T respect topstd, gives pstd
=s1/T* dexps−t /T* d, with the specific average timeT*
=exps−ad wherea is the entropy of the noise when all out-
put states have the same noise.

Including a refractory periodt0 gives also a Poisson dis-
tribution but with an exponent that has a more complicated
expression,pstd=b exps−btd, with b a solution ofb=st0

+b−1ds−log b−a+1d that can be formally expressed asb
=t0

−1Product Log(t0 exps−ad).
A more realistic case would consider that the differentt

have different amounts of noise. In this case there are devia-
tions from the Poisson distribution. The situation is analo-
gous to that of Sec. V but in this case the output state costs
are times and are expressed as

pst jd = Ẑ−1 exps− b̂t j − ĵ jd, s24d

a generalized Poisson distribution that reduces to the Poisson
distribution in the limit of no noise or when all output states
have identical noise. For a maximization of the rate of infor-
mation transferI /T would select a particularb* to be deter-
mined numerically.

VII. BALANCE BETWEEN SIGNAL QUALITY AND COST
EFFICIENCY IN NEURONS

In this section we discuss maximum information transfer
for neural codes based on spike rates(number of action po-
tentials per second), spike times and bursts and a simple
network configuration. For the spike rate code, we compare

the theoretical result and recordings in awake monkeys from
Ref. [9] (see also Ref.[10]). These recordings were obtained
extracellularly from cortical neurons in awake macaques
while they watch movies of natural scenes on a monitor.

Metabolic costs[19] and noise are known to influence
neuronal signaling[20,21]. Measurements of cost and noise
are however not detailed enough for our purposes so our
strategy is to make simple assumptions. First we discuss the
case of a neuronal code based on spike rates. We will make
the following simple assumptions:(1) the output states are
the neurons spiking rates,(2) the cost is linearly proportional
to the spiking rate, and(3) the noise is here defined as de-
viations from the rate with a maximum probability obtained
for the same stimulus and its underlying causes include extra
spikes or their absence from network or intrinsic activity. In
particular, we simply include noise as spikes produced when
the noise-free state(the most probable state) corresponds to
silence. These assumptions are formalized in the following
way. Let S=hs0=0,s1=1, . . .j be the desired or noise-free
rates andM =hm0=0,m1=1, . . .j the actual rates. According
to assumption 2, the costs of the rates areesmid=e0+e1i with
e0 and e1 constants. In accord with assumption 3,pssi umid
=1−Ai and pss0umid=Ai, with Ai decreasing with the spike
rate. We found thatAi =a0 exps−gid is a simple function
working well for all neurons tested. We have included these
three assumptions into the algorithm in Sec. V and we found
that

psrd < Z−1 exp„− br − exps− r/ad… s25d

approximated well the numerical and experimental results,
wherer is the rate. Note that different average costsE and
different amounts of noise give different distributions but the
functional form of the prediction is the same for all neurons
within the above simple assumptions for the noise and cost
constraint.

Figure 5 compares the theoretical prediction with record-
ings from visual cortex neurons. Similar fittings are obtained
for all neurons presented in[9] and the two chosen illustrate
the cases of small and large effect of the presence of noise.
For high spiking rates the theoretical expression in Eq.(25)
predicts an exponential decay that is clearly seen in Fig. 5(a).
The exponent in this decay depends, according to the theory,
on the mean cost. For low spike rates, the theoretical expres-
sion in Eq.(25) predicts a low usage to keep signal quality,
as seen in Fig. 5(b). In general, there is a balance between
signal quality and cost-efficiency that explains signal use, as
seen in Fig. 5(c). Experimental data is then consistent with
maximum information transfer with a linear cost constraint.
According to the theory of optimal transfer and within the
simple assumptions made above, neurons would then have
the same functional form for the distribution as in Eq.(25)
and the differences then arise due to different amounts of
noise and different mean costs. Experiments using naturalis-
tic stimulus could be designed to test whether signal usage
varies according to the noise characteristics of the neuron, as
predicted here. For the more general nonstationary case, the
noise and cost might change dynamically. In this case the
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signal usage should always match this changes to maintain
an expression like Eq.(25).

Faster signaling could be based on spike times instead of
spike rates. As we saw in Sec. VI, the maximum rate of
information corresponds in this case to a distribution of the
form

pstd = Ẑ−1 exp„− b *̂t − ĵstd…. s26d

The noise is responsible for the deviation from a pure Pois-
son distribution. Near-Poisson distributions are routinely ob-
served in neuronal recordings. Experimental measurements
of noise, together with expression(26) would be able to dis-
tinguish if these experimental distributions emerge from op-
timal transmission or randomness.

The neuronal code could also be based on spike bursts.
Maximal information transfer for bursting systems would be
slightly different depending on the type of constraint. Pure
maximal rate of information transfer would predict a gener-
alized Poisson distribution witht the duration of the burst
(or t0+t if we include the silences between bursts). It is also
possible that the relevant optimization is the information per
unit energyI /E. This optimization gives a result analogous
to the I /T optimization as the signaling cost associated to
each burst is directly proportional to its duration. However,
the total cost ise=e0+e1i, with e0 a basal cost independent
of the signaling. The value ofe0 would not affect the maxi-
mization of information with a cost constraint, but it affects
the maximization ofI /E. To experimentally distinguish be-

tween between theI /T and I /E optimizations, one would
need to compare the casese=e0+e1i andt=t0+t1t.

The results from the single-neuron cases apply straight-
forwardly to the network case when the neurons are uncor-
related. In this case the output state is the pattern of network
activity instead of the pattern of activity of a single neuron.
Costly and noisy patterns of network activity should be
avoided for high constrained communication. Let us consider
the more general case of a given mean correlation. Con-
cretely, we consider the transfer of an inputS into the activ-
ity of N correlated neurons with activitieshx1,x2, . . . ,xNj and
mean pairwise correlationskxixjl and for simplicity no other
constraints. The probability maximizing the information
transfer is then of the form

psxd = Z−1 expS− o
iÞ j

bi j xixj − jsxdD . s27d

Maximum information transfer for this network case penal-
izes correlated states as well as noisy states. In general there
should be a balance between these two factors as well as any
other constraints.

Neurons are not only maximizing information transfer,
but processing the information. Results from that processing
must however be communicated reliably within constraints.
There is a natural room in the present formulation for pro-
cessing thanks to the matrixQ of transitions between input
and output states. These transition states not only describe
the noise(one to many transitions) but also any processing
(many to one transitions).

VIII. OTHER CONSTRAINTS AND MORE LINKS TO
STATISTICAL PHYSICS

Previous sections have considered a single constraint. In
general there are several constraintsEk on the properties
ek of the form Ek=oipsmidei

k. For this case, the maxi-
mum information transfer solutions have the formpsmid
=Z−1 exp(−sokb

kei
kd−ji).

We have also considered in previous sections that costs
(metabolic or temporal) are linear. It is well known that the
Gaussian distribution maximizes the entropy with a quadratic
cost constraint[2]. Following the arguments in previous sec-
tions, maximizing the information transfer with a quadratic
cost constraint will then give a generalized Gaussian distri-
bution with the extra exponent penalizing noisy states.

More sophisticated constraints result in more elaborate
distributions. In the following we give several complex con-
straints that do not have at present a direct application to
biology, but that nevertheless illustrate the generality of the
approach by obtaining other results from statistical physics.
The reason for this success lies in the relationship of infor-
mation theory and entropies[22]. Our approach contains pre-
vious results as particular cases when the noise is negligible
or independent of the state.

Consider a system that has a constraintE, a constraint in
the expected number of system elements and in the maximal
number of elements in each state. Letpssijd represent the
probability that the the system statei is occupied byj ele-

FIG. 5. Comparison of the theoretical prediction for maximum
information transfer with a cost constraint in Eq.(25) (solid line) to
the experimental spike rate distributions of visual cortex neurons.
The spike rate(number of action potentials per second) was taken
from. [9] Their recordings were obtained using extracellular elec-
trodes in awake monkeys while they watch a monitor showing natu-
ral scenes. An exponential decay of the signal usage in(a) assures
cost efficiency. Low signal usage at low spike rates in(b) assures
signal quality. There is a good correspondence between theory and
experiments for all spike rates, as shown in(c).
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ments. Following a procedure analogous to the maximization
in Eq. (4) but now with the constraint expressed as
oi=1

K eio j=0
Mi jpssijd=E, a constraint in the number of system

elements asoi=1
K o j=0

Mi jpssijd=N and the normalization con-
straint aso j=0

Mi pssijd=1, with hMij the maximum number of
elements in each statei, we obtain the probability that maxi-
mizes the information transfer between the input(system)
and output(measured) states as

pssijd =
exp„− sb̂ei + m̂d j − ĵi j…

o j=0

Mi exp„− sb̂ei + m̂d j − ĵi j…

, s28d

whereb̂ andm̂ are the values of the Lagrange multipliers for
the constraintE and the total number of elements, respec-
tively. To see the relationship with problems in statitical
physics we take the limit of no transitions between states,
j→0, and consider the case for which all states have same
maximal value of elements,Mi =M for all i. The proportion
of elements in each statei reduces in this case to the Bose-
Einstein distribution ni =o j=0

M jpssijd=fexp(−sbe+md+1)g−1

or the Fermi-Dirac distributionfexp(−sbe+md−1)g−1 for M
→` and M =1, respectively. Viewing the input and output
states as the system and measured states in statistical experi-
ments, the common statistical distribution follow for maxi-
mum information transfer with simple constraints in the no
transitions or low-noise limit.

IX. DISCUSSION

The theory of biological signaling benefits from the re-
sults of information theory, that provides the rate of informa-
tion transfer as the functional to be optimized in communi-
cation systems. Instead of calculating global optima of the
information transfer, an approach closer to biological sys-
tems is to include relevant constraints. Here we have in-
cluded noise and costs constraints into information theory to
include the limitations in signaling that biological systems

are confronted with. We have asked which are the distribu-
tions that maximize the information transfer given any noise
and any constraints. We have obtained generalized versions
of the Boltzmann, Gaussian, Poisson and other distributions
with an extra term measuring the amount of noise. The bio-
logical transformations that maximize the transfer have been
shown to be those that dedicate more output range to the
more probable inputs and least range to the noisy states and
the states with a higher contribution to constraints. Nonco-
operative reactions are best suited for the transfer of sub-
strates with a maximum at low concentrations while coop-
erative reactions for near-Gaussian distributions. The firing
of neurons is penalized for low rates to minimize the effect
of noise and for high rates for cost efficiency.

Some extensions of the results may proof particularly use-
ful. The effect of the processing through the matrixQ should
be studied in particular applications. The importance of
chemical reactions as means of communication and their
construction to adapt to input statistics and to reduce the
effect of noise has been discussed here, but further theoreti-
cal and experimental work is needed to show its relevance.

The theoretical results point to new experimental venues.
Both noise and cost measurements are needed to understand
the statistics of signal usage. Experiments designed to under-
stand mechanisms should also measure the statistics in natu-
ralistic conditions as they may be matched for high informa-
tion transfer.
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