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Communication in biological systems must deal with noise and metabolic or temporal constraints. We
include these constraints into information theory to obtain the distributions of signal usage corresponding to a
maximal rate of information transfer given any noise structure and any constraints. Generalized versions of the
Boltzmann, Gaussian, or Poisson distributions are obtained for linear, quadratic and temporal constraints,
respectively. These distributions are shown to imply that biological transformations must dedicate a larger
output range to the more probable inputs and less to the outputs with higher noise and higher participation in
the constraint. To show the general theory of reliable communication at work, we apply these results to
biochemical and neuronal signaling. Noncooperative enzyme kinetics is shown to be suited for transfer of a
high signal quality when the input distribution has a maximum at low concentrations while cooperative kinetics
for near-Gaussian input statistics. Neuronal codes based on spike rates, spike times or bursts have to balance
signal quality and cost-efficiency and at the network level imply sparseness and uncorrelation within the limits
of noise, cost, and processing operations.
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I. INTRODUCTION dratic constraints. We also show optimal signaling at work in
biochemical and neuronal signaling. The simple “rule of
Optimization theory has made an important impact in outhumb” we obtain is that biological systems with a high in-
understanding of biological structures like insect compoundormation transfer must dedicate more output range to the
eyes or bones as well as in biological movement and behawmore probable inputs and less to the noisier ones and to those
ior [1]. Optimality arguments complement mechanistic mod-paying a higher metabolic cost or time. We also show the
els by pointing to relevant constraints and common themefinks of the present theory to results in statistical physics,
underlying different mechanisms. Here we are interested ifhat are obtained here in the limit of no noise or no transi-
optimal biological signaling. Arguments about the optimality tions.
of biological signaling have a long tradition, especially in  The paper is organized as follows. Section Il gives the
neurosciencg¢2—6]. An important reason for the success of statement of the maximization of the constrained information
optimality theories of biological signaling is the applicability transfer. Section Ill discusses a particular case with analyti-
of information theory[7] and the links of this theory to sta- cal solution to gain insight into the general problem. Section
tistical physics[2]. IV gives an application to the case of enzymatic reactions.
Recently, realistic constraints have been incorporated t@ection V gives the general solution to the optimal problem
the theory of optimal biological signaling for a better corre- as a generalized Boltzmann form. Section VI discusses the
spondence with experiments. Energy costs have been consigase of temporal constraints, that results in a generalized
ered in the context of neuronal signalif@j and theoretical Poisson distribution. Section VIl gives the application to sev-
results in this case have been shown to correspond to somegal cases of neuronal signaling. Section VIII discusses con-
cortical neurong9,10.. We have generalized the optimal sig- straints for several components that reduce to results in sta-
naling theory by considering both costs and ndisg. We tistical mechanics in the limit of no noise or no transitions.

found a much improved correspondence between theory arfinally, we discuss possible extensions of the results.
experiments in most cortical neurons when including both

noise and cost constraints into the theory. Both signal quality
and cost-efficiency were found to shape signaling. Similar II. MAXIMUM INFORMATION TRANSFER WITHIN

discussions of the interplay of cost and noise have been BIOLOGICAL CONSTRAINTS
given in the discussion of retinal signaling2,13 and in Consider first the simple case of discrete states and a
other stochastic neural signaling proble[ad]. single constraint. The term information transfer is used infor-

Here we extend the general theory of optimal biologicalmally in biology and its most studied quantitative counter-

signaling to consider any type of constraints. A generalizeghart is the information transfer proposed by Shannon
Boltzmann distribution is obtained for a linear cost con-2,715. Let S={s;,s,,...,s} be the input states anM

straint, a generalized Poisson when the constraint is in the my, My, ...,m} the output states. There is information
times and a generalized Gaussian when considering qugansfer when there is a statistical dependency between input
and output. This is expressed as the averdigégancebe-
tween the joint distribution for input and output states
*Email address: gonzalo.polavieja@uam.es p(s,m;) and the distribution corresponding to complete in-
URL: http://www.ft.uam.es/Neurociencia/gonzalo/Legizge. htm dependency between thepbs;, m;)iq= p(s)p(m;) as
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Our optimization problem consists in maximizing the in-
formation transfet given a cost constraint and a noise struc-
ture. The cost constraint and the noise structure are included Ip
in the maximization in the following way. The cost constraint S, m, £~¢;
is given by fixing the average valleof a quantitye, say the X
expected energy and the energy values of the systems states, 5 m, €
respectively, aE=3,p(m)¢. This cost might be metabolic I-p

or, for_example_, an average .tlme. Costs that are. phy;lcally FIG. 1. Simple case of communication from three input states to
very different, like energy or time, can be treated identically

f th tical int of Vi Th . truct .7 three output states. Maximum information transfer with a constraint
rom a mathematical point of view. € noise SUClure 1S;, yhe cost implies a penalization of the noisy statée first twg

fixed by an specified transition matr@k]-:p(sk| mJ') given by and of the costly stateghe third ong. These abstract states can

the probability that when the the output is in statethe  represent, for example, enzyme concentration values, the different
input state wass,. The transition matrxQ is introduced in  firing patterns of a neuron, or the patterns of network activity.
the definition of the information transférin the following

way. The information transfdr can be expressed as the dif- o B B
ference between the output entropy and the noise entropy,l(S’M) = - 2p(my)log p(my) — p(mg)log p(mg) — 2p(my) €,
1(S;M)=H(M)-H(M|9), with H(M)=-X;p(m;)log p(m) 5
the output entropy ant(M|S)=-Z; p(s;,my)log p(m;[s,) with the & in Eq. (2) given by

the noise entropy. To express the noise entropy solely in ! '

terms of the output probabilitiegp(m)} and the matrixQ, &L=&=-plogp-(1-p)log(l-p)=&:6=0. (6)
we use the following relations. We can write the noise en- .
tropy asH(M|S)=3:p(m)& with The output states that maximizein Eqg. (4) are
iPUT )6
p(my) = p(my) =Z " exp(— Bey - é), (7)
&=-2 Qylog Py, (2
‘ p(me) = Z* expl- Bey), ®

where the matriX® has element®y=p(m;|s) that can be  with 7=2 ex(-Be;~ £ +exp—Be;) the normalization con-
eXpreSSEd in terms of the transition mat@(usmg BayeS' stant andﬁ given by the value of the average energy

theorem[15] as 2p(my) e, +p(my) e3=E. The probabilities for the input states
are obtained fromp(s)=2Z;Qxp(m) to be p(s)=p(s,)
Py = _PM)Q (3y  =p(my) andp(ss)=p(my).
i E,— p(m)Qy, In the case of equal costs and equal noise for all states, the

information transfer is maximized with equal output prob-
The maximum information transfer problem consists themabilities. In the case of all states having the same noise but
in finding the output probabilitie§p(m;)} that maximize the different costs, the output states that maximize the informa-
information transfeit given the noise matriQ and the cost tion transfer have a Boltzmann distribution that penalizes
constraintE=X;p(m;)¢. Equivalently, using the method of more the output states with higher cost with a factor
the Lagrange multipliers, we can maximize exp(—Be,) for the nth state. In the case of all states having
the same cost but different noise, output states are penalized
[ —B(E p(my)e; - E> _)\(2 p(my) - 1), (4  more with higher noise with a factor ef,). In general,
i j both cost and noise penalize output states in a form general-
izing the Boltzmann distribution with an extra exponent pe-
with | the information transfer and the second and thirdnalizing the amount of noise.
terms the cost constraint and the normalization, respectively. From this example we can also obtain the relationship
between the information transférand the average value of
the constrainE substituting the output probabilities into the
expression of in Eqg. (1) to obtain

To gain insight into the type of solutions we can obtain | = BE +log Z, (9)
from the constrained maximum information problem, we
first consider a simple analytical case with three states. Ther in terms of the output and noise entropiesHi$)=BE
first two states have the same noise and cost and the thirtlog Z+H(S|M) or H(M)=pE+logZ+H(M|S), respec-
one is noiseless and has a higher cost, as depicted in Fig. flvely. In the limit of no transitiongp— 0 in the examplg
This means that; =¢,, €3> €, and the noise matrix is given the probabilities reduce to the Boltzmann form and the rela-
by Q11=Q2=1-p, Q1,=Q,1=p andQz3=1. The information tion in Eq.(9) to the relationship familiar in statistical me-
transferl for this case can be written as chanics of the fornH=8E+logZ with H(S =H(M).

Ill. AN ANALYTICAL EXAMPLE
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. . . o FIG. 3. Substrate distributions for simple reaction kinetics maxi-
FIG. 2. Relationship between input and output distributions anchwize the information transfer. For Michaelis-Menten kinetics

the input to output transformation for maximum information trans-zl) the distribution has a maximum at the lowest substrate concen-
fer, here illustrated for the transformation from the dimensionles§ration and a heavy tail. Increasing the cooperativityf the kinet-

substrate concentratid§]/k to the dimensionless reaction velocity ics corresponds to distributions with a maximum closer to the con-
v. In the simple case of no noise present and no cost constraint, t"é‘?antk in the reaction kinetics in Eq12).

output distribution is a constant and the transformation is the inte-

gral of the input distribution. More output range is then dedicated to ) ) ) ) )

the more probable inputs, as illustrated by the two equal intervals of WO identical intervals of substrate values shown in Fig. 2

substrate concentration. have very different output ranges, larger in the case of the
more probable inputs.
IV. INFORMATION TRANSEER IN BIOCHEMICAL Figure 3 shows the optllr.nal substrate Q|str|byt|on for dif-
REACTIONS ferent values of cooperativitp. For the Michaelis-Menten

case,n=1, the distribution has a maximum &]=0 and a
We consider the transformation of input states given byheavy tail that makes the mean undefined. For cooperative
the value of the concentration of substrg®into the veloc-  kinetics the densities have their maximum at
ity of an enzymatic reaction. We consider here the simple =kn! cose¢w/n) that increases with increasimgand in the
case of a single substrate. For generality, we consider the Hilimit n— « tends tok. With increasing cooperativity the den-
equation, a phenomenological expression valid both for nonsity is increasingly close to a Gaussian function centeréd at

cooperative and cooperative kinetics, of the form and with decreasing width. The qualitative difference be-
N tween the Michaelis-Menten and cooperative kinetics can be

- i (10) understood with the aid of Fig. 2. The largest slope of the

K"+ [S]" reaction velocity in the Michaelis-Menten case is at low sub-

strate concentrations, while for cooperative kinetics is close
to k. For the most probable inputs to have a larger output

ity | ) thn T derstand the diff bet representation, the substrate distribution has then to be maxi-
Ity increasing withn. 10 understand the dilference between ... ot o\ values for Michaelis-Menten and at values close
noncooperative kinetics and cooperative kinetics for infor-

tion t f der the simplest f . to k for cooperative kinetics.

ma |0nt rar:js efr, Wetcon3|t er i §”:];|mp es (_:astg 0 ?(:hno_lse The match between substrate distribution and kinetics dis-
Frese? arl nofco_s ?ﬁns raint. the mfx'm'.iﬁ 1on oF the ¢ ssed in Fig. 2 is for a stationary substrate distribution.
ormation transfer in this case givemkv)=a with @ a €on- e s distribution varies with time, the kinetics must
stant. In general the input a_nd output prot_)abmtles are r?Iateghange accordingly to keep the match that assures maximal
by p(s)=2QqP(M). The simple case with no noise iS & jntomation transfer. The input to output transformation must
transformation of variables frof5] to v so the probability then adapt to the changing statistics as

densities are related ggv)dv=p([S])d[S]. Using the opti-
mal velocity density p(v)=«, it follows that p([S])
=a(dv/d[S]), that gives

corresponding to Michaelis-Menten kinetics for1 and to
cooperative kinetics fon> 1, with the degree of cooperativ-

(sl
) v([S];t) :f d[SIP(S];t). (12
knn[sn 1 0

(K +[S])?”

Figure 2 illustrates this relationship between the input toFigure 4 illustrates the case of a probability density of a
output transformation and the input and the output probabilsubstrate with a decreasing variance in time. The transforma-
ity densities that maximize the information transfer. Fortion that maximizes the information transfer then corre-
maximum transfer with no nois@r same noise for all ve- sponds to a cooperativity increasing in time.
locities) and no cost constraint the input density must be the For the case of maximal information transfer with a cost
derivative of the input to output transformation. This meansconstraint with costs of the forr(v), the optimal probability
that the more probable inputs have a larger output rangealensity of substrate concentration is

p(S) = (11)
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P.
max  max Ep(mj)ij Iogi. (15)
P p(m):Zjp(m)e=E j k p(m;)

The double maximization can be performed using the alter-
nating Blahut-Arimoto algorithm[15—-17. This algorithm
starts with a guess of the output distributipfm;) (say, a
random vectorand finds theP;, from Eq.(3). A better guess
for the output probabilities is then given by

exp —(Be; - Ek Qyj log Py)
p(my) = . (16
2]- exp —(Be - Ek Qyj log Pji)
where B in Eqg. (16) has to be evaluated at each step in the
alternating algorithm from the energy constraint as

EJ- € exp —(Be; - Ek Qjk log Py)
>

]

=E. (17
exp —(Be - Ek Qjk log Py

This output distributiorp(m) in Eq. (16) is then used for the
next iteration and the operation is repeated until conver-
gence. Csiszar and Tusnafli8] have shown that such an
alternating algorithm converges to the maximum for this type
of problems. For clarity, we give the recipe for calculation as
follows.

Initialize p° as a random vector.

FOR t=0,1,2...(until convergencg

(b)

4
FIG. 4. Maximum information transfer for nonstationary sub- ng: P(my) Qy (18)
strate statistics. (a) Example of a substrate distribution that has a ] t‘m: .'
( ) P Ei p (mj)ij

decreasing variance in time(b) To keep the match between input
statistics and kinetics that assures maximal transfer, the kinetics has

tq a@apt When_the chan_ge in substrate statis_tic_s. In this case the exp —(ﬁtfj - Ekaj log PJFk)
kinetics has to increase its degree of cooperativity. p“l(mj) = , (19
EJ exp —(B'ej— 2, Qujlog Pj,)
_, kK'n[g"t .
P(S) =2 1ﬁ exp(— Be(v)). (13) whereg' in Eq. (19) has to be evaluated for eatlirom the
(K" +[S]") energy constraint
The substrate values contributing to a larger output range are EJ- € €Xp —(Btéj - Ek Qjk log P}k)
the most probable ones with the lower cost at the output. In X —=E. (20)
the next section we will see that the noise acts as an extra Ej exp (B - szjk log Pj)
cost as already seen in the example given in Sec. ll. ENDFOR
As in the simple analytical example in Sec. lll, the prob-
V. GENERAL SOLUTIONS abilities have the form
— 51 p: g
To obtain the general solution we will use the alternating p(my) =Z""exp(— Be; — &), (21

Blahut-Arimoto algorithm[15-17, used in communication LSS -
theory to calculate the channel capacity and the rate disto}'—vhere the hat symbol id, B and¢ refers to the converged

. . L . . values. The distribution obtained has then the form of a gen-
tion function [15]. The maximization of the constrained in- . L . .

L . eralized Boltzmann distribution with an exponential penal-
formation information transfer,

ization of cost and noise.

max >, p(m)Q,; log p(my) Qi . (19 VI. GENERALIZED POISSON DISTRIBUTIONS FOR
p(m):Z;p(my)€=E | p(my) >, p(my) Qi TEMPORAL CONSTRAINTS

We have considered the maximization of the information
can be expressed as a double maximizafisee Lemma transferl given a cost constraint and obtained a generalized
13.8.1 and Eqg. 13.145 if15]] as Boltzmann distribution. When considering that the output
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statesM take different times, these different times play thethe theoretical result and recordings in awake monkeys from
role of the costs and the Boltzmann distribution reduces tdref.[9] (see also Ref(10]). These recordings were obtained
the Poisson distribution. In previous sections we have conextracellularly from cortical neurons in awake macaques
sidered the maximization of the information transferA  while they watch movies of natural scenes on a monitor.
maximization of the rate of information transfieiT does not Metabolic costs[19] and noise are known to influence
affect previous results, but it matters when the different costeeuronal signaling20,21. Measurements of cost and noise
are times. In particular, the maximization of the rate of in-are however not detailed enough for our purposes so our
formation transfet/T singles out a particular Poisson distri- strategy is to make simple assumptions. First we discuss the

bution, as we show in the following. case of a neuronal code based on spike rates. We will make
Let the inputS be the timest and the output states the the following simple assumptiongl) the output states are
times 7. The information transfer has the form the neurons spiking rate&) the cost is linearly proportional

o o to the spiking rate, an¢3) the noise is here defined as de-
I(t:7) :f f dt dr p(t,7)|0g< p(t, 7) ) (22) viations from the rate with.a maximu_m probabiIiFy obtained

o Jo p(t)p(7) for the same stimulus and its underlying causes include extra

) ) ) spikes or their absence from network or intrinsic activity. In
that can be written using entropies d6S;M)=H(M)  particular, we simply include noise as spikes produced when
—HM[S), with H(n)=-fgdrp(n)logp(7) and H(7|t)  the noise-free statdhe most probable stateorresponds to
=[od7[op(7)p(t| Dlogp(7|t). The average tim& is given by  sjlence. These assumptions are formalized in the following
T=[od7p(7)7. Maximizing information transfel with an  way. Let S={s,=0,5,=1,...} be the desired or noise-free
average time constraint is equivalent to maximizingC rates andV={my,=0,m;=1, ..} the actual rates. According
:=|—-BT. For the case in which all output states have theyg assumption 2, the costs of the rates élrg) = ¢y + €;i with

same noiset(7|t)=a, this maximization gives €, and ¢, constants. In accord with assumption &s;|m,)
1 =1-A and p(sp|m)=A;, with A; decreasing with the spike
p(7) = = exp(— 7/T), (23 rate. We found thatA;=agexp(—-yi) is a simple function
T working well for all neurons tested. We have included these
that is a Poisson distribution corresponding to an informatiorthree assumptions into the algorithm in Sec. V and we found
transfer of the form =logT+1 -c. that
The maximization of the information raté T when all 7
have the same noise is a particular Poisson distribution. p(r) =~ Z L exp(- Br - exp(- r/a)) (25)

Maximizing the functionl/T respect top(7), gives p(7)

=(1/T*)exp—7/T*), with the specific average tim&* ) . )

—exp(—a) where« is the entropy of the noise when all out- approximated well the numerical and experimental results,
put states have the same noise wherer is the rate. Note that different average cdstand

Including a refractory period;, gives also a Poisson dis- different amounts of noise give different distributions but the

tribution but with an exponent that has a more complicatedtnctional form of the prediction is the same for all neurons
expressionp(n) = B exp(—B7), with B a solution of 3=(1, within the above simple assumptions for the noise and cost

+ 31— ot constraint.
_ﬂ_l)( log f=a+1) that can be formally expressed s Figure 5 compares the theoretical prediction with record-
=1, Product Lod 7 exp(—a)).

A more realistic case would consider that the different ings from visual cortex neurons. Similar fittings are obtained
. for all neurons presented [9] and the two chosen illustrate

o e Foemen A momion. o e o o casesof sl and arge efet o he presenc of i
: For high spiking rates the theoretical expression in )
t[§redicts an exponential decay that is clearly seen in Fay. 5
The exponent in this decay depends, according to the theory,
_51 - P on the mean cost. For low spike rates, the theoretical expres-
P(7) = Z7expl= 7 = §)), 24) sion in Eq.(25) predicts a I0\l7v usage to keep signal qual?ty,
a generalized Poisson distribution that reduces to the Poiss@s seen in Fig. ®). In general, there is a balance between
distribution in the limit of no noise or when all output states signal quality and cost-efficiency that explains signal use, as
have identical noise. For a maximization of the rate of infor-seen in Fig. &). Experimental data is then consistent with
mation transfet/T would select a particulg8* to be deter- maximum information transfer with a linear cost constraint.
mined numerically. According to the theory of optimal transfer and within the
simple assumptions made above, neurons would then have
the same functional form for the distribution as in EB5)
and the differences then arise due to different amounts of
noise and different mean costs. Experiments using naturalis-
In this section we discuss maximum information transfertic stimulus could be designed to test whether signal usage
for neural codes based on spike raggsmber of action po- varies according to the noise characteristics of the neuron, as
tentials per second spike times and bursts and a simple predicted here. For the more general nonstationary case, the
network configuration. For the spike rate code, we compar@oise and cost might change dynamically. In this case the

are times and are expressed as

VII. BALANCE BETWEEN SIGNAL QUALITY AND COST
EFFICIENCY IN NEURONS
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tween between thé&/T and I/E optimizations, one would

= =3 prtppaggt need to compare the casesey+el and =75+ 7.
a —4% - *F {; iy, The results from the single-neuron cases apply straight-
£ 5 _7 ] forwardly to the network case when the neurons are uncor-
related. In this case the output state is the pattern of network
(@ 10 15 20 25 10 20 30 40 activity instead of the pattern of activity of a single neuron.
. 5 Costly and noisy patterns of network activity should be
= 6 T\ i avoided for high constrained communication. Let us consider
=4 1} { the more general case of a given mean correlation. Con-
- 2 i\\,\ N'\‘\v\.\'\F cretely, we consider the transfer of an inf@into the activ-
(t;) ¢ * == — 5 10 ity of N correlated neurons with activitig®;,X,, ... Xy} and
mean pairwise correlatior(s;x;) and for simplicity no other
2 S =2 constraints. The probability maximizing the information
= 4 ! 4T . transfer is then of the form
= -6 -6 {
~ - l p(x)=Z"* EXP(— E BiXiX; = §(X)) : (27
5 10152025 10 20 30 40 i#]
(c) Spike rate

Maximum information transfer for this network case penal-
FIG. 5. Comparison of the theoretical prediction for maximum izes correlated states as well as noisy states. In general there
information transfer with a cost constraint in E85) (solid line to ~ Should be a balance between these two factors as well as any
the experimental spike rate distributions of visual cortex neuronsOther constraints.
The spike ratgnumber of action potentials per secondas taken Neurons are not only maximizing information transfer,
from. [9] Their recordings were obtained using extracellular elec-but processing the information. Results from that processing
trodes in awake monkeys while they watch a monitor showing natumust however be communicated reliably within constraints.
ral scenes. An exponential decay of the signal usage)iassures There is a natural room in the present formulation for pro-
cost efficiency. Low signal usage at low spike rategtipassures  cessing thanks to the matrf@ of transitions between input
signal quality. There is a good correspondence between theory ar@hd output states. These transition states not only describe
experiments for all spike rates, as shown(dn the noise(one to many transitionsbut also any processing
(many to one transitions
signal usage should always match this changes to maintain
an expression like Eq25).
Faster signaling could be based on spike times instead of VIIl. OTHER CONSTRAINTS AND MORE LINKS TO
spike rates. As we saw in Sec. VI, the maximum rate of STATISTICAL PHYSICS
information corresponds in this case to a distribution of the

form Previous sections have considered a single constraint. In

general there are several constraififs on the properties
€ of the form Ek:Eip(m)e!‘. For this case, the maxi-
mum information transfer solutions have the fonpam;)
=Z ' exp(—(Be) - &)
The noise is responsible for the deviation from a pure Pois- We have also considered in previous sections that costs
son distribution. Near-Poisson distributions are routinely ob{metabolic or temporalare linear. It is well known that the
served in neuronal recordings. Experimental measurementsaussian distribution maximizes the entropy with a quadratic
of noise, together with expressig26) would be able to dis- cost constrainf2]. Following the arguments in previous sec-
tinguish if these experimental distributions emerge from op+ions, maximizing the information transfer with a quadratic
timal transmission or randomness. cost constraint will then give a generalized Gaussian distri-
The neuronal code could also be based on spike burstbution with the extra exponent penalizing noisy states.
Maximal information transfer for bursting systems would be More sophisticated constraints result in more elaborate
slightly different depending on the type of constraint. Puredistributions. In the following we give several complex con-
maximal rate of information transfer would predict a gener-straints that do not have at present a direct application to
alized Poisson distribution withr the duration of the burst biology, but that nevertheless illustrate the generality of the
(or 7o+ 7 if we include the silences between bujstsis also  approach by obtaining other results from statistical physics.
possible that the relevant optimization is the information pefThe reason for this success lies in the relationship of infor-
unit energyl/E. This optimization gives a result analogous mation theory and entropi¢22]. Our approach contains pre-
to the I/T optimization as the signaling cost associated tovious results as particular cases when the noise is negligible
each burst is directly proportional to its duration. However,or independent of the state.
the total cost iss=¢€y+ €;i, With €y a basal cost independent ~ Consider a system that has a constr&ina constraint in
of the signaling. The value of, would not affect the maxi- the expected number of system elements and in the maximal
mization of information with a cost constraint, but it affects number of elements in each state. L#s;) represent the
the maximization ofl/E. To experimentally distinguish be- probability that the the system statés occupied byj ele-

p(7) =Z " exp(- B* 7— &(7). (26)
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ments. Following a procedure analogous to the maximizatiomre confronted with. We have asked which are the distribu-
in Eq. (4 but now with the constraint expressed astions that maximize the information transfer given any noise
EiﬁleiEj“ibjp(stE, a constraint in the number of system and any constraints. We have obtained generalized versions
elements asziﬁlzj’\iiojp(sj):l\j and the normalization con- of the Boltzmann, Gaussian, Poisson and other distributions
straint aSEj:iop(Sij):lr with {M;} the maximum number of With an extra term_measuring th_e gmount of noise. The bio-
elements in each statewe obtain the probability that maxi- l0gical transformations that maximize the transfer have been

mizes the information transfer between the inpsysten shown to be those that dedicate more output range to the

and outputmeasurejistates as more probable inputs and least range to the noisy states and
the states with a higher contribution to constraints. Nonco-

exp(— (,éei +)j - %ij) operative reactions are best suited for the transfer of sub-
p(s;) = M - N (28) strates with a maximum at low concentrations while coop-

Ej:o exp(= (Be + wi - §ij) erative reactions for near-Gaussian distributions. The firing

- of neurons is penalized for low rates to minimize the effect
where and i are the values of the Lagrange multipliers for of noise and for high rates for cost efficiency.
the constrainte and the total number of elementS, reSpeC- Some extensions Of the results may proof particular'y use-
tively. To see the relationship with problems in statitical . The effect of the processing through the matxshould
physics we take the limit of no transitions between statespe studied in particular applications. The importance of
§—0, and consider the case for which all states have samghemical reactions as means of communication and their
maximal value of elementd/;=M for all i. The proportion  construction to adapt to input statistics and to reduce the
of elements in each statereduces in this case to the Bose- effect of noise has been discussed here, but further theoreti-
Einstein distribution n=3Mjp(s;)=[exp(—(Be+w)+1)]™  cal and experimental work is needed to show its relevance.
or the Fermi-Dirac distributiofiexp(—(Be+u)—1)]™* for M The theoretical results point to new experimental venues.
—o and M=1, respectively. Viewing the input and output Both noise and cost measurements are needed to understand
states as the system and measured states in statistical expefie statistics of signal usage. Experiments designed to under-
ments, the common statistical distribution follow for maxi- stand mechanisms should also measure the statistics in natu-
mum information transfer with simple constraints in the noralistic conditions as they may be matched for high informa-
transitions or low-noise limit. tion transfer.
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